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Abstract

This study aimed to further the understanding of laminar flow through a dim-

ple with the goal of mitigating flow separation. Dimples of various depth to diameter

ratios (0.05, 0.15) were examined for three different dimple diameters and chord-

wise locations, corresponding to diameter based (ReD) and chordwise location based

(Rex) Reynolds number combinations of ReD20500 Rex5000, ReD20500 Rex77000, and

ReD9000 Rex21000. For the last combination, a dimple of depth to diameter ratio of

0.25 was also examined. The dimples were placed in a flat plate located in a diverg-

ing channel causing an adverse pressure gradient encouraging flow separation near the

dimple location. The flow was modeled in the commercial CFD solver Fluent. Results

indicate that dimple depth to diameter ratio has a significant effect on the structure

of dimple flow. The shallowest dimples showed little change to the overall flow in the

channel. Deeper dimples contained dynamic vortical flow structures with behavior

varying between each dimple studied. This dynamic vortex activity was observed to

be linked with variances in downstream flow. The 0.15 depth to diameter ratio dim-

ples showed behavior very similar to 0.10 ratio dimples investigated elsewhere. The

0.25 dimple show flow different in nature than 0.15 dimples for the same ReDand Rex;

the differences were not as stark as those between 0.05 and 0.15 dimples. In light of

this and other studies, dimple flow behavior is found to depend on a combination of

parameters that eludes direct quantitative parameterization. However, the conclusion

is drawn that the most effective dimple will be just deep enough to develop dynamic

vortical activity and vortex shedding.
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CFD Investigation of Effect of

Depth to Diameter Ratio on Dimple Flow Dynamics

I. Introduction

High altitude reconnaissance can provide valuable military intelligence over a

wide area. If an aircraft is able to loiter over a particular area, it can provide

near real-time information. Unmanned Air Vehicles (UAVs) have become popular

choices for this mission due to their range and endurance. However, UAVs operating

in this role are being limited by inefficiencies in the low pressure turbines (LPT)

of their powerplants. The combination of the high altitude and low speed flight

envelope desired for high altitude reconnaissance results in low Reynolds numbers

and, subsequently, laminar flow in the LPT. Inefficiencies arise as the flow separates

over the LPT blades. Shallow dimples have shown promise in limiting separation, and

are very attractive due to their passivity and the ease of implementation into existing

blades.

1.1 Research Goals

The exact nature of the flow in and downstream of the dimple is not fully under-

stood. Questions remain as to how different parameters, such as depth, diameter, and

placement affect the flow dynamics in the dimple. This research aims to examine the

effects that dimple depth to diameter ratio has on dimple flow dynamics in laminar

flow subject to an adverse pressure gradient sufficient to cause flow separation

1.2 Motivation for Research

Flow separation in the low pressure turbine results in significant efficiency losses

in the gas turbine. Separated flow causes a drop in total pressure through the engine.

Lake [6] showed that the engine efficiency could be increased by 0.057% for every

percent reduction in total pressure loss. An increase in engine efficiency translates
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directly into an increase in range, or a corresponding increase in payload or decrease

in fuel consumption. Mechanisms to control boundary layer separation may initially

be divided into two types: active and passive. Active boundary layer control, such

as suction and blowing, can offer more effective boundary layer control. However, it

is much more complex to implement, increasing both weight and cost of an engine.

Also, it is much harder to implement after engine construction.

Passive flow control generates greater interest because of its low cost, both in

installation and maintenance. Passive techniques typically rely on generating vortices

to energize flow in order to overcome adverse pressure gradients. Protruding passive

flow control devices produce streamwise vortices. These vortices are generally quite

stable and are able to energize the flow far downfield. Recessed passive flow control

may consist of dimples, grooves, or porus cavities. While they do not mix downstream

flow as effectively as protruding devices, they offer a smaller drag penalty when used

outside their design envelope.

James Lake [6] performed an examination of passive techniques in suppressing

boundary layer separation on a Pak-B turbine blade. He examined the effectiveness

of dimpels, v-grooves, and trip wires in reducing losses due to separation. He placed

a row of elliptical dimples (with major axis perpendicular to the flow direction) at

several different axial chord locations. Lake found that the dimples offered significant

improvement over the baseline Pak-B blade in mitigating separation losses. He was

able to consistently reduce total pressure loss coefficient by more than 40% when using

dimples.

At a Reynolds number of 50k and low freestream turbulence, the unmodified

Pak-B blade had a large separation bubble. The bubble began at about 73% of the

chord and reached a maximum above the blade at 89% of the chord. In the best

dimple case, the separation bubble was much smaller. It had a maximum height

about one sixth that of the separation bubble on the unmodified blade. Turbulence

profiles reveal greater turbulence for the dimpled case near the surface of the blade,

2



but less throughout the boundary layer/separated region. The turbulence intensity

profiles of the dimpled case reflected those of unseparated flow. Lake compared the

use of dimples to trip wires and v-grooves; dimples proved superior to both.

1.3 Research Approach

Dimples of varying depths will be analyzed with the commercial Computational

Fluid Dynamics (CFD) code Fluent. The dimples will be located on a flat plate. An

infinite span of dimples will be simulated. To simulate the condition of separation on

a turbine blade, an adverse pressure gradient will be implemented. This investigation

aims to further the understanding of flow characteristics within the dimple. To this

end, exact replication of quantities such as vortex shedding frequencies, pressure vari-

ations and magnitude and velocity profiles from Pak-B turbine blades is unnecessary.

Essentially, this investigation studies the flow behavior in dimples of various depth to

diameter ratios on a flat plate in an adverse pressure gradient enforced by a diverging

top wall.

1.4 Outline of Thesis

Chapter one presents an introduction to the investigation and motivation for the

study. Chapter two gives background on dimple flow leading to this study. Chapter

three describes the methodology used in this research, including a description of the

software used. Chapter four present the results of the investigation and analysis.

Chapter five summarizes the study and provides suggestions for future study.

3



II. Background and Theory

Research has been done on dimples for a broad range of applications and flow

regimes. However, many of these applications involve turbulent flow. Research

on laminar flow in dimples is much harder to come by. Some investigations have

been made that may provide information applicable to optimizing dimple usage for

mitigating separation on low pressure turbine blades.

2.1 Previous Research on Dimples

In order to determine what characteristics of dimples still need to be studied,

an overview has been made of previous investigations. Earlier research has already

determined the effect and optimum usage of several different dimple characteristics

and parameters.

James Lake [6] examined dimple location along with comparing dimples to v-

grooves and trip wires in his investigation on reducing sparation on a Pak-B turbine

blades. He found that dimple location had an effect on dimple effectiveness. Dimples

were most effective when placed slightly upstream of the unmodified blade separation

point. As the dimple was moved further upstream of the separation point, its effec-

tiveness decreased. His research shows that for maximum effect, dimples should be

placed as closely as possible to the point of separation.

Kurt Rouser [10] expanded on the research of James Lake. He tested different

dimple shapes, an elliptical dimple and a half ellipse symmetrical dimple cut in the

direction of the flow. Both of these dimple shapes were compared to the baseline Pak-

B blade. Rouser’s results from both experimental and CFD investigation revealed

that the larger, symmetric dimple was more effective in controling separation and

increasing efficiency of the turbine blade.

John Casey [2] continued the investigation of dimples as a method of boundary

layer control on a Pak-B low pressure turbine blade. He tested different patterns

and spanwise spacing of dimples with both a wind tunnel and CFD. Casey found

that increasing the spacing between dimples in a single row did not substantially
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affect separation performance. He also investigated adding a second row of dimples

staggered from the first. Casey observed that while this configuration did alter the

flow dynamics, it did not offer better performance. He concluded that a single row of

dimples with spacing near one dimple diameter was the best configuration.

Robert Vincent [14] carried out a detailed CFD examination of flow dynamics

within a spherical dimple. In an effort to separate boundary layer effects from dimple

diameter effects, Vincent investigated a number of different flow geometries. He varied

two parameters, Rex (by changing streamwise dimple location) and ReD (by changing

dimple diameter). He held dimple depth to diameter ratio to a constant 0.1. Vincent

found that changing ReD and Rex had significant impact on dimple flow dynamics. He

observed that stronger (more stable) vortices existed in dimples with high boundary

layer momentum compared to dimple diameter (i.e., high Rex and low ReD) to a point.

Flow through the dimple became much more disorganized if ReD increased and Rex

decreased beyond a certain range.

The research of Lake and Casey has done much to help optimize the location

and layout of dimples on a turbine blade. Rouser’s work provided information on how

dimple flow may be influenced by changing shape. Vincent’s investigation provided

information on the effect of changing dimple geometry. It also shed light on the

flow dynamics through the dimple, and how changes in geometry affect the flow.

However, Vincent isolated only one dimple geometry parameter. Changing other

dimple geometry parameters may have an impact on dimple flow dynamics and need

to be investigated in order to determine optimal dimple shape.

2.2 Dimple Flow Dynamics

Having established dimple parameters that have already been studied, the next

step is to determine what parameter most warrants further investigation. To do this,

it is important to understand the nature of the flow through a dimple. How and

why the dimple affects downstream flow is also important. Using previous research
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to develop an understanding of these factors will lead to a better prediction of which

dimple characteristic would be most benefical to study further.

2.2.1 Flow Through a Dimple. Rouser found a vortex core stretched across

both the symmetric and asymmetric dimples. He suggested that the trapped vortex

within the dimple and the flow it entrained were the strongest contributors to the

increase in efficiency observed by Lake. Furthermore, Rouser concluded from his

CFD investigation that the flow through the dimple was fundamentally unsteady.

Casey also found a vortex contained within the dimple defined by a separation line

on the dimple leading edge and a reattachment line on the dimple trailing edge. This

suggests the vortex found by Rouser occupies most of the dimple. Casey also found

that the flow was drawn towards the center of the dimple before being expelled,

shedding some light on the vortex orientation within the dimple.

Ligrani [7] offers a qualitative description of flow through a dimple. Smoke lines

revealed that flow was drawn from above the dimple to impact on the downstream

rim. Accompanying this were pairs of recirculation zones within the dimple. Then,

flow from the central part of the dimple moved upward and was ejected. As flow was

ejected from the dimple center, flow moved in from the dimple sides to take its place.

The ejected flow formed a pair of steamwise counter-rotating vortices. This vortex

pair was stretched downstream, and new flow was drawn into the dimple. Figure 2.1

provides futher detail.

Ligrani’s description of dimple flow suggests that changing dimple depth may

have impact on dimple flow. A deeper dimple with respect to dimple diameter may

draw flow in more severely (greater change in streamline direction). Also, when the

flow is expelled from the dimple, the greater amount of flow to be expelled combined

with the smaller cross sectional area through which the flow is expelled may result in

stronger vortices emerging from the dimple.

However, analogies from cavity flow suggest changing dimple depth may funda-

mentally alter flow dynamics. In general, cavities may be thought of as open or closed
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Figure 2.1: Ligrani’s suggestion of the cycle of flow through a dimple [7]
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with a depth to length ratio of 1/8 dividing the two rectangular cavities [5]. In open

cavities, flow separates at the leading edge and reattaches at the cavity trailing edge.

In a closed cavity, flow reattaches on the cavity bottom before reaching the trailing

edge. Grace [5] and Ozsoy [9] examined laminar flow in a rectangular cavity with a

depth to length ratio of 0.25 and found two spanwise counter rotating vortices fully

contained within the cavity. The only significant downstream flow effect was an in-

crease in boundary layer thickness. While any cutoff between open and closed flow in

dimples may be different than in rectangular cavities, the same principle (significant

change in flow dynamics with a change in depth) still may apply.

Vincent [14] investigated dimples with a number of different diameter and chord

based Reynolds numbers. Unlike Casey and Rouser, he focused his research on the

flow dynamics within the dimple itself. Unlike Ligrani, he used a CFD approach,

allowing him to get much better detail on the flow within the dimple. Vincent noticed

a number of flow characteristics common to most of the dimples that corroborated

Casey and Rouser. A separation line was located at the dimple leading edge and a

reattachment line at the trailing edge. Vincent was able to further resolve the nature

of the vortex flow within the dimple. He observed a wake zone towards the stern of

the dimple characterized by large, disorganized vortical activity and vortex shedding.

A recirculation zone in the bow of the dimple was dominated by pinned vortices. The

typical location and makeup of these zones is shown in Figure 2.2.

Vincent was able to divide his results into three principles classes depending

upon the character of the dimple flow. One class of dimples was characterized by

contained, highly chaotic wake structures. This class also contained a much larger and

more chaotic wake region. Another class was characterized by more organized vortices

periodically forming and shedding. The third class showed little wake and little effect

on the flow. In this case, the wake region has disappeared leaving symmetric flow.

A larger ReD (larger dimple diameter) encouraged greater flow mixing and a more

chaotic structure, while a larger Rex (thicker boundary layer) seemed to reduce the

effect of the dimple on the flow. Vincent suggested that the amount of energy entering

8



Figure 2.2: Vincent’s breakdown of the wake and recirculation zones observed
within the dimple and identification of typical vortex cores [14]

9



the dimple could be an important parameter in determining the nature of the flow

within. He qualitatively characterized energy by boundary layer thickness and dimple

diameter; a thicker boundary layer introduces less energy into the dimple, and a larger

diameter more energy. Vincent also suggested that the character of the vortices within

the dimple depended upon ReD and Rex. He observed that stronger (more stable)

vortices existed in dimples with high boundary layer momentum compared to dimple

diameter. These results reveal that altering dimple diameter may have a significant

affect on flow dynamics. However, Vincent maintained a constant dimple depth to

diameter ratio. Because of this, effects observed when changing ReD (i.e. dimple

diameter) may have been due rather to changing dimple depth.

2.2.2 Flow Effects Downstream. The purpose of using dimples is to alter

downstream flow. To this end, it is important to understand how and why dimples

change the flow downstream. This will provide an indication of what flow dynam-

ics in a dimple are favorable for mitigating flow separation. Rouser [10] concluded

that vortices caused by the dimple entrained flow, leading to better separation per-

formance. Casey [2] observed cycles of reattachment and separation downstream of

the dimple. This suggested that the shedding of vortices from the dimple played a

roll in combating flow separation.

Ligrani [7] made an interesting observation connecting vorticity magnitudes and

flow mixing. He found that time averaged streamwise vorticity and maximum nor-

malized Reynolds normal stress ((u′2/U2)max) followed similar trends. Furthermore,

Ligrani found that the locations of vortex pairs near the dimpled surface corresponded

well with locations where normalized Reynolds normal stress was increased. Flow mix-

ing seems to be a primary method by which separation is reduced [14], and Ligrani [7]

showed that vorticity has a direct effect on flow mixing. Hence higher streamwise

vorticity generation is a desirable dimple trait.

Vincent [14] observed pressure waves in his CFD analysis resulting from impact

of shedding vortices upon the trailing edge of the dimple. These pressure waves had
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a frequency of order 100 Hz, with frequency increasing with ReD. Vincent concluded

that the largest benefits of the dimple could be obtained with high speed shedding.

The shedding of vortices served to mix the flow and alleviate separation. He found

that shedding frequency had a strong dependence on dimple size; large dimples (high

ReD) had fairly constant frequencies while medium dimples had variable shedding

frequencies. Small diameter dimples showed no shedding. The higher ReD and lower

Rex cases also displayed an occasional shedding of the entire vortex within the dimple.

Dimples between small and large diameter showed vortex shedding alternating side

to side across the dimple, similar to Von Karman shedding. Again, however, because

Vincent linked diameter and depth, the changes he noticed from increasing diameter

may have been due to increasing dimple depth.

2.3 Use of CFD

Several previous studies have verified the applicability of CFD to studying dim-

ple flow dynamics. Rouser [10] found that the total pressure loss coefficient computed

from CFD and wind tunnel experiments closely matched each other. Casey found

that CFD boundary layer profiles were qualitatively similar to experimental data.

The boundary layer profiles and the total pressure loss coefficients followed similar

trends. This suggests that CFD may be used to qualitatively investigate dimple flow

dynamics.

However, Rouser found that turbulence models he used were unable to capture

separation on the Pak-B turbine blade. He tested Spalart-Allamras, K-ω, and K-ε

models. Hence, he (along with Casey [2] and Vincent [14]) used laminar models. While

laminar solvers proved able to simulate flow inside of the dimple, downstream of the

dimple Casey found that experimental and CFD data began to differ substantially.

This is likely the result of much more complex, turbulent flow downstream of the

dimple. Because of this, data taken from a laminar CFD solver from far downstream

of the dimple should be examined with great caution.
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2.4 Implications for this Research

Previous research has already established the effect of some parameters in using

dimples to reduce losses due to laminar flow separation on a Pak-B turbine blade.

Dimple location on the blade, basic dimple geometry, and dimple spacing patterns

have already been investigated. So too have more precise dimple geometric charac-

teristics such as dimple diameter. However, this leaves several dimple characteristics

left to study. A study of known qualities of flow through dimples reveals that dim-

ple depth may be an interesting parameter to study. Changing dimple depth may

alter flow characteristics. Vortex strength and shedding frequency may be affected by

changing dimple depth, and this, in turn may change dimple effectiveness in mitigat-

ing flow separation.
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III. Methodology

Computational Fluid Dynamics is a very complex process. Each stage, grid

generation, flow solving, and visualization, must be understood in order to be

used properly. Each step must not be viewed as a ”black box”. The strengths and

weaknesses of different methods and software must be understood along with their

application to the specific problem to be investigated.

3.1 Basic Geometry

A low pressure turbine has very complex geometry. A large number of blades

are arranged to project radially, and each blade itself can have a complex geometry.

Simplifications are necessary to reduce computing time and cost. Casey’s investigation

used an extrusion of a 2-D airfoil to model a cascade of turbine blades. Vincent’s study

went much further in the simplification.

Skyred [13] performed an investigation comparing flow dynamics of dimples on

concave, convex, and flat surfaces. Although the Reynolds numbers used in his study

were higher than the ones used here, the dimples displayed behavior similar to Vin-

cents. Skyred found a similar flow pattern in all three geometries. The flow structure

in the dimples seemed to be more self-organized than dependant upon dimple surface

geometry. From Skyred’s study, pressure gradient is seen to be a more important

factor in dimple flow than domain shape.

As a consequence of Syreds study, Vincent determined that the complex ge-

ometry of a turbine blade could be replaced with a far simpler flat channel with an

adverse pressure gradient sufficient for separation. The basic geometry used in this

investigation is the same as that used by Vincent. As seen in Figure 3.1, the side walls

are flat, as is the bottom wall with the exception of the dimple. Vincent enforced an

adverse gradient by using a diverging top wall. Lake’s [6] research found that dimples

were most effective when placed near the point of flow separation on an unmodified

airfoil. Hence, the dimple will be placed near the point of flow separation.
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Figure 3.1: Profile of channel created by Vincent [14], with sparation line identified

Vincent [14] determined the top wall geometry through trial and error on a flat

plat channel. The following equation describes a top wall geometry that produces an

adverse pressure gradient sufficient to cause separation near the middle of the channel

without drawing vortices too far from the bottom wall. Separation is identified by

reversed flow and a line of zero shear stress.

Z(x) =







0.04995 + 0.0160601 ∗ x + 0.376516x2 + 0.371514 ∗ x3 : −0.06 ≤ x ≤ 0.2

0.15 : 0.2 < x ≤ 0.34

(3.1)

The role of the top wall is to enforce the adverse pressure gradient. It is not

necessary to model a boundary layer on the top wall, so to reduce computational time

and cost, it will be made an inviscid wall.

In order to simulate an infinite span of dimples, the side boundaries will be

periodic. Casey found that spanwise dimple spacing did not significantly affect flow

characteristics, thus dimple spacing is not a great issue. For convenience, Vincent’s

dimple spacing of 2 dimple diameters will be used. The channel itself will be 3 dimple

diameters wide.

3.2 Flow Geometry

Three Rex and ReD combinations from Vincent’s study will be used. One is a

mid range case, with an ReD of 9500 and Rex of 21000. This case will be studied to

see if changing dimple depth results in the character of the flow becoming more like
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Table 3.1: Geometric Paramaters of Each Dimple

Depth (m) Diameter (M) Depth to Diameter Ratio xle (m) ReD Rex

0.00065 0.013 0.05 0.0236 9500 21000
0.00195 0.013 0.15 0.0236 9500 21000
0.00325 0.013 0.25 0.0236 9500 21000
0.0015 0.03 0.05 0.0058 20500 5000
0.0045 0.03 0.15 0.0058 20500 5000
0.0014 0.03 0.05 0.1124 20500 77000
0.0045 0.03 0.15 0.1124 20500 77000

a case of higher or lower ReD or Rex. The other two values chosen reflect extremums

of Vincents study; both have a high ReD of 20500. One has a Rex of 5000, the other

77000. These extreme cases may be more sensitive to the variation of dimple depth.

For each case, a dimple depth to diameter ratio of 0.05 and 0.15 will be tested (a

50% increase and decrease from Vincents ratio of 0.10). Additionally, a depth to

diameter ratio of 0.25 will be tested on the mid range case. The higher dimple depths

may result in fundamental changes to dimple flow dynamics, as suggested by study

of laminar flow in shallow cavities. Table 3.1 outlines domain geometry for each case.

Figure 3.2 shows where the cases to be studied lie with respect to the geometries

tested by Vincent.

3.3 Grid

As a result of Casey’s [2] observation that a laminar flow solver is sufficient

to capture flow dynamics inside the dimple and necessary to model sparation, no

turbulence model was used for this investigation. This greatly reduces the computing

cost by requiring fewer equations to be solved and by reducing the required size of the

grid. However, in order to assure that the grid is not too coarse to capture important

flow characteristics, grid spacing adjacent to the wall, yp, is set to:

yp

√

U∞

νx
≤ 1.0 (3.2)
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Figure 3.2: The range of geometries tested by Vincent, with the ones to be studied
in this investigation circled in black [14]

This gives a limit of 1.05e−4m for the initial vertical cell spacing.

This investigation used Vincent’s grids modified to vary dimple depth, and so the

grid topology is very similar to Vincent’s. In order to get more cells into the dimple,

Vincent reduced the cell spacing there. Vincent used a hyperbolic tangent function

with an initial spacing of 5E-6m for the cell spacing in the dimple. The final grid had

240 nodes on the dimple perimeter, 3400 horizontally across its interior, and 35 in its

depth for a total of about 121,000 cells in the dimple. In the streamwise direction,

Vincent stretched and compressed the dimple spacing to maximize resolution for a

distance of two dimple diameters upstream of the dimple and three dimple diameters

downstream.

Vincent’s grids each consisted of 18 blocks. The total length and size of each

grid depended upon ReD and Rex of the particular case. For this investigation, three

of Vincent’s grids were modified. These grids corresponded to the ReD and Rex for

which dimple depth was varied. The grids originally contained a dimple with a depth
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Figure 3.3: Typical grid layout

to diameter ratio of 0.1. In order to change this ratio to that needed for each case of

the investigation, the dimple grid was projected onto a section of a sphere with size

and location necessary to produce a dimple of the desired depth. This gave spherical

dimples of the same diameter and grid topology as those produced by Vincent. The

total number of cells varied with the size of the grid; for the smallest case (ReD of

9500, Rex 21000) the total number of cells is 1.64 million and for the largest case (

ReD of 20500 Rex 5000) the total number of cells is 3.17 million.

Figure 3.3 and Figure 3.4 show several views of the ReD 9500, Rex 21000 grid

with dimple depth to diameter ratio of 0.15. The grids for the different cases are

generally similar. For changing Rex, the dimple is moved in the streamwise direction.

For changing ReD, the dimple diameter (and thus overall width of the domain) is

increased.

3.4 Flow Solver

Fluent was the CFD solver used in this investigation. Fluent [4] is a control

volume based flow solver. It functions by transforming the governing equations for

mass and momentum (Equations 3.4 and 3.5) into discretized algebraic equations. It
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Figure 3.4: Closeup view of the dimple

then linearizes these equations to obtain a solution to update the variables.

δρ

δt
+ ∇ · (ρ~v) = Sm (3.3)

δ

δt
(ρ~v) + ∇ · (ρ~v~v) = −∇p + ∇ · (τ) + ρ~g + ~F (3.4)

Fluent applies the above differential equations to the domain using a control volume

approach. The governing equations are integrated about a control volume to give
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discrete conservation equations in each control volume; the following is an example.

∮

ρφ~v · d ~A =

∮

Γφ∇φ · d ~A +

∫

V

SφdV

where

ρ = density

~v = velocity vector

~A = surface area vector

Γφ = diffusion coefficient for φ

∇φ = gradient of φ

Sφ = source of φ per unit volume

This equation is applied to each cell in the domain. The resulting variable value is

stored at each cell center. However, face values are required to update variable values

at each cell. Different interpolation techniques used are described below.

The flow velocity for this investigation is 10 m/s. A flow velocity this low is

well within the incompressible regime, and density will be nearly constant. Because

of the low speed flow, a segregated solver is used in which the governing equations for

mass and momentum are solved sequentially. In the segregated solver, the continuity

equation is used as a pressure equation. In order to introduce pressure into the con-

tinuity equation, the Semi-Implict Method for Pressure-Linked Equations (SIMPLE)

is used.

The SIMPLE scheme relates pressure and velocity corrections to calculate the

pressure field and ensure conservation of mass. It starts by solving the momentum

equation with a guessed pressure field

J∗

f = Ĵ∗

f + df(p
∗

x0 − p∗c1) (3.5)
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However, the result does not satisfy continuity. In order to correct this, a fluctuation

as a function of pressure is added to the face flux

J
′

f = df(p
′

c0 − p
′

c1) (3.6)

with p′ a cell pressure correction term. The flux correction equations are then substi-

tuted into the continuity equation to solve for cell pressure correction

aP p
′

=
∑

nb

anbp
′

nb + b (3.7)

with b the net flow rate into the cell

b =

Nfaces
∑

f

J∗

f Af (3.8)

This pressure correction is multiplied by an under-relaxation factor and added to the

guessed pressure.

Pressure is stored at cell centers. However, the discritzed momentum equations

require pressure values at cell faces. For this investigation, a second order interpolation

between cell centers is used to obtain pressure on cell faces. The second order scheme

is used to provide greater accuracy in the complex vortical flows. The interpolation

is based on a Taylor expansion of the solution at the cell center about the centriod of

the cell

φf = φ + ∇φ · ∆~s (3.9)

with ∆s as the displacement vector from the upstream centroid to the face centriod,

and φ and ∇φ are the cell centered value and its gradient. The gradient value is found

using a discrete form of the divergence theorem

∇φ =
1

V

Nfaces
∑

f

φ̃f
~A (3.10)
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A higher order momentum interpolation is used for this investigation, again to

better capture the complex vortical flows in and beyond the dimple. For momentum, a

third-order MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws)

scheme is used. This scheme combines a second order upwind scheme with a central

difference scheme.

φf = θφ + (1 − θ)φf,SOU (3.11)

In Equation 3.12, φf is the center face value of φ, and φf,SOU is that value computed

with the second order upwind scheme. The basic MUSCL approach is based upon

using a hybrid scheme to find the values to the left and right of a face of interest.

Blazek [1] gives the following equations:

UR = UI+1 −
ε

4
[(1 + k̂)∆− + (1 − k̂)∆+]UI+1

UL = UI −
ε

4
[(1 + k̂)∆+ + (1 − k̂)∆−]UI

where UR is the right state (i.e. state beyond face of interest) and UL is the left state.

The parameter k̂ affects the balance of the interpolation. Different values of k̂ will

result in different interpolation types. For example, if k̂=1, then MUSCL reduces to

a central scheme, if k̂=1/3, MUSCL will be a third order scheme.

3.4.1 Boundary Conditions. The boundary conditions were the same for

each geometry tested. The front wall is a velocity inlet of 10 m/s. The rear wall is a

velocity outlet. The side walls are periodic. The top wall is a slip surface with zero

shear stress. The bottom wall and dimple are no-slip walls.

3.5 Data Collection and Flow Visualization

In each case studied, seven monitors were placed with equal spacing between

the center of the dimple and the end of the domain. These monitors were set to

record static pressure at each time step. The pressure taps are useful for gauging and

comparing flow activity in and downstream of the dimple. The power spectrum of
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Table 3.2: Streamwise location of the pressure taps
in each case (in cm), where the first pressure tap is
centered above the dimple

ReD/Rex Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7

9000/21000 -2.99 2.92 7.58 12.86 18.15 23.43 34.00
20500/5000 -0.01 4.85 9.71 14.57 19.42 24.28 34.00
20500/77000 6.60 10.52 14.43 18.34 22.26 26.17 34.00

the pressure tap is used to find possible dominant frequencies. Table 3.2 gives exact

pressure tap locations for each case.

The prevalence of unsteady vortical structures in this investigation results in

a time-dependent problem, calling for an unsteady computation. A time step size

of 1 ∗ 10−4 was chosen as a balance between problem stability and computing cost.

Collecting data on the entire grid often enough to resolve flow characteristics is not

possible (one data file is about 300-500 Megabytes; scores of data files for each of

the 8 cases would be required). In place of Fluent’s data exporter, a VTK Extractor

was used. For each case, a box was established around the dimple for runtime data

export to a Visualization Tool Kit (VTK) XML file. Each box consisted of, roughly,

a domain starting one-half dimple diameter upwind of the dimple to one diameter

behind, one dimple diameter across, and from the floor of the dimple to one half

diameter above the dimple. Specific box geometry varied for each case to minimize

box size while ensuring that all pertinent flow characteristics were included.

VTK is a 3D visualization application available freely. It is capable of facilitating

visualization of scalars, vectors, and tensors, making it very flexible and powerful in

analyzing CFD data [11]. The Fluent VTK Extractor (FVE) used here was developed

specifically to save a portion of the Fluent data generated at runtime [8]. FVE uses the

grid manipulation, sampling, and input/output capabilities of VTK. It is implemented

through the use of two user defined functions in Fluent. The first function defines the

bounding box and the data (i.e., velocity, pressure, density, etc.) to be exported. The

other function writes the desired data at specified time steps. The functions and the
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FVE libraries are built and loaded into Fluent. Fluent then calls these FVE functions

at runtime and exports data as instructed. For this investigation, data is exported

every 10 time steps. For this incompressible flow case, components of velocity are

sufficient for evaluating any parameter of interest, and so are the only quantities

exported with FVE.

Ensight 8 is used for flow visualization. Ensight [3] groups elements of a model

into parts. Different operations can be applied to each part for a wide variety of flow

characteristics and visualization settings. Ensight can easily handle time-dependent

data, important for this unsteady flow problem. Other principle features of insight

to be used include particle traces, vortex cores, vorticity isosurfaces, and velocity

vectors.

Particle traces are extremely helpful in qualitative flow analysis. Particle traces

are made by a time integration of a vector field variable using a fourth order Runge-

Kutta method with a time varying integration step. Integration can be restricted by

specifying which vector components to use. For example, surface restricted traces

may be made by using only the velocity component tangent to the surface. Particle

traces are used for surface flows on the dimple itself and to observe the behavior of

flow through and above the dimple. For the former, 300-400 sources are placed within

the dimple and constrained to move on the dimple surface. For the latter, a rake is

placed upstream of the dimple just above (on the order of 0.1mm) the domain surface.

From this rake are emmited 20-50 evenly spaced streamlines.

Vortical motion is a dominant feature of the flow in this investigation; it is

the vortices that are thought to make the dimples effective in alleviating separation.

Thus, their behavior will be of great interest. The strength, location, movement,

and endurance of the vortices are examined. This will require identification of vortex

cores. Ensight uses the velocity gradient tensor of a three dimensional flow field to

locate vortex core segments. Vortex cores are computed using an algorithm based on

critical point theory [12]. A critical point of a vector field is one where the vector
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magnitude vanishes. If the rate of deformation tensor at a critical point has one real

and one complex pair of eigenvalues, then the flow forms a spiral at that point with

the real eigenvalue pointing in the direction about which the flow spirals. If a non-

critical point has the necessary eigenvalues, the velocity in the direction of the real

eignvalue is subtracted; if the resulting value is zero, then the point is the center of

swirling flow. Algorithms developed by Sujudi, Haimes, and Kenwright are used in

Ensight to calculate vortex cores [3].

Vorticity isosurfaces are also used to study the flow within the dimple. These

surfaces are easily made based on calculating the curl of the vector field inside the do-

main. The vorticity isosurfaces are classified as low, medium, or high strength relative

to each individual dimple. The high strength vorticity isosurfaces reflect vorticities

that exist in small regions of the dimple, medium strength vorticity isosurfaces in

more of the dimple (filling 30%-40% of the shear layer) and low strength vorticity

isosurfaces exist throughout the shear layer and into the wake region. These vorticity

isosurfaces help in making qualitiative comparisons of different dimple flow structures

rather than quantitative comparisons of vortex strength.

As this is a principally qualitative investigation, the structure, trends, and pat-

terns of flow within each dimple are the main characteristics studied. To this end, for

each dimple case, animations are made from the data collected for each dimple. The

animations include surface oil flows on the dimple itself, vortex cores, velocity pro-

files, separation and reattachment lines, streamlines and vorticity isosurfaces. From

these animations comparisons are made between the flow structure of different dim-

ples (each of the nine different dimples), cases (the 3 different ReD Rex combinations

studied), and categories (groupings based upon flow structure, explained in Chapter

4).
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IV. Results

While each dimple geometry investigated had its own unique characteristics,

the dimples fell into four general categories of flow. These categories are

identified by general names according to their overall structure and characteristics.

These categories do not reflect definite, near-identical groups of dimples; rather, they

provide a means of guiding analysis and serve to qualitatively group dimples. Table 4.1

gives an overview of the different geometries and the categories they fall into.

The categories are determined by character of flow within the dimple. In general,

the steady category is distinguished by its fixed vortex activity and lack of significant

time-dependent flow qualities. The quasi-steady category is characterized by the pres-

ences of dynamic pinned vortices revealed by oil flow surface sinks. The bulk shed

category is marked by many of the same features as the quasi-steady, except with

occasional large-scale shedding and disruption of dimple flow. The chaotic category is

characterized by little observed structure or regular motion associated with the bulk

shed or quasi steady flow cases. More characteristics of each category are described in

their respective sections below, along with details of the sometimes significant differ-

ences between different dimples within the same category. Comparisons to Vincent’s

observations for each dimple are also given.

Table 4.1: Category of each dimple

ReD Rex Depth to Diameter Ratio Flow Category

9000 21000 0.05 Steady
20500 5000 0.05 Steady
20500 77000 0.05 Steady
9000 21000 0.25 Quasi-Steady
20500 77000 0.15 Quasi-Steady
9000 21000 0.15 Bulk Shed
20500 5000 0.15 Chaotic
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Figure 4.1: Pressure variations recorded for ReD 9500, Rex 21000 0.05 h/D Dimple

4.1 Steady Category

All three 0.05 dimple depth to diameter ratio cases showed near steady behavior.

There is little vortical activity, and pressure tap data for all three of these cases is

strikingly similar. Figure 4.1 shows a typical plot of pressure tap data. The first two

pressure taps show no activity; pressure did not vary at all at the two pressure taps

directly above and just downstream of the dimple. It varied only little in the pressure

taps further downstream. The behavior of the first pressure tap suggests essentially no

time-varying activity within the dimple for all dimples within this category. Assuming

this suggests that the activity of the downstream pressure taps is not a result of the

dimple. The activity at these taps is most likely due to flow disturbances resulting

from separation. Examination of the separation location corroborates this; the second

(and last calm) pressure tap is located just downstream of the separation line. Taps

further downstream are within the region where the flow has separated.

The PSD plot (Figure 4.2) of the pressure tap data is also similar for all three of

these cases. Again, there is little power spectrum activity in the first two pressure taps,

confirming that the flow by these two stations is nearly steady. As with the pressure

26



Figure 4.2: PSD plot of pressure tap data for ReD 9500, Rex 21000, 0.05 h/D
Dimple

taps, this conclusion suggests that the frequencies observed in the downstream taps

are a result of disturbances associated with separation, and not from dimple activity.

The streamlines, vorticity isosurfaces, oil flows, and velocity vector profiles pro-

vide more detail in the dimple flow and, for each dimple, corroborate general conclu-

sions drawn from the pressure tap and PSD data. When animated, they show almost

no time-dependent change. Figure 4.3 shows oil flow and streamlines typical for this

category. The lack of dimple effect on the streamlines, emitted from just above the

domain surface upstream of the dimple, is clear.

Despite the overall similarity between these cases, close examination of the flow

dynamics within these dimples reveal that they are not the exact similar, whatever

the overall effect on the flow may be. Figure 4.4 compares the velocity profile typical

of the ReD 9000 Rex 21000 dimple (which is very similar to the ReD 20500 Rex 77000)

to the velocity profile of the ReD 20500 Rex 5000 dimple. The higher Rex dimples

both contain a large fixed spanwise vortex in the middle of the dimple, as evident

in the velocity profile. Surface flows and separation lines reveal this vortex results
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Figure 4.3: Surface line (red) and channel streamlines (green) of the ReD 9500 Rex

21000 dimple

in a separation line near the dimple leading edge and attachment line in the back

half of the dimple. The remaining case, however, shows slightly different behavior.

The region of reversed flow within the dimple is much smaller, and is located on the

slope on the upstream half of the dimple. Examination of boundary layer thickness

compared to dimple depth may provide an explanation for this.

As shown in table 4.2, the two cases with standing vortices have a dimple depth

less than boundary layer thickness, while the case with a much smaller vortex and

region of reversed flow has a dimple depth much greater than boundary layer thickness.

This results in freestream air being drawn deeper into the dimple. The presence of

higher velocity air closer to the surface is likely helping to prevent reversed flow on

the dimple. This reveals that the depth of the dimple in relation to the thickness of

the boundary layer can affact dimple flow behavior.

These dimples probably show little effect on the channel flow because they are

not deep or steep enough to produce large velocity gradients. Vortices are essential

to flow mixing, and vorticity is equal to the curl of the velocity field ~ω = ~∇× ~V . If

velocities and velocity gradients are small, vorticity will be small, and flow mixing will
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(a)

(b)

Figure 4.4: Velocity profiles of the (a) ReD 9000 Rex 21000 (b) ReD 20500 Rex 5000
dimple

Table 4.2: Comparison of dimple depth and bound-
ary layer thickness among dimples of the steady cat-
egory

Rex Dimple Depth (cm) δ∗99 (cm)

5000 0.150 0.045
21000 0.069 0.089
77000 0.150 0.22
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be minimal. These dimples have gradual depth changes and small velocity gradients.

While dimple flow in general is much more complicated than this, the explanation

should be sufficient for this particular shallow geometry.

4.1.1 Comparison with Vincent. Even though the lack of activty may make

this category seem uninteresting, the absence of effect on the flow has signficiant im-

plications. All cases showed behavior for a 0.05 depth to diameter ratio (h/D) dimple

that differed greatly from Vincent’s depth to diameter ratio of 0.1. The difference in

the ReD 20500 Rex 5000 case is especially apparent. Vincent’s 0.1 depth to diameter

ratio dimple for this case showed highly chaotic, highly random behavior. Vincent’s

dimples for the other cases show pinned horseshoe vortices rather than a fixed sepa-

ration bubble. Each 0.05 depth to diameter ratio dimple, however, acted much like

the others of similar depth to diameter ratio. These shallow dimples behave much

more like Vincent’s small diameter/low ReD cases (Figure 4.5). The stark differences

between the 0.05 diameter dimples and the 0.10 reveal that dimple depth does have

an effect on dimple flow.

4.2 Quasi-Steady Category

This category (the 0.15 h/D ReD 20500 Rex 77000 and 0.25 h/D ReD 9500 Rex

21000 dimples) shows much more impact of the dimple on the flow than the steady

category. The pressure tap data (Figure 4.6) for the dimples within this category

show at least some degree of activity (however small) in the first pressure taps where

it was lacking in the steady category. This suggests more flow activity within the

dimple. While the 0.25 h/D dimple does not show much activity through 2.3 seconds,

there is a continual, if small, pressure variation at all taps by 2.35 seconds. The 0.15

h/D dimple shows much more activity throughout the time domain. However, this

downstream activity gradually dampens as the flow moves downstream.

The PSD data (figure 4.7) from these cases show less similarity. The PSD plot

for the 0.25 h/D case resembles the steady category PSD plots; it begins with a high
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Figure 4.5: Vincent’s 0.10 depth to diameter ratio dimple of ReD 2500 and Rex

95000

signal power, then quickly drops off leaving little but noise at higher frequencies. The

only two possible candidates for distinct frequency peaks are at about 100 Hz and 400

Hz; however, these peaks are small and not very distinct. In contrast to the steady

category PSD plots, the 0.25 h/D dimple retains high frequency activity above and

just downstream of the dimple as the taps further downstream show less. The 0.15

h/D case, on the other hand, has a distinct spike at 400 Hz. There is significant

spectrum activity throughout the frequency range for the first several taps. As with

the 0.25 h/D dimple, though, the pressure taps towards the end of the domain show

little activity beyond 200 Hz. While it may seem that the pressure tap and PSD data

make these two dimples appear more different than similar, it was not for the pressure

tap and PSD plots that these two cases were grouped together.

Surface oil flow plots (figure 4.8) reveal interesting similarities between these

two cases. Both contain two distinct surface sinks on either side of the chordwise

centerline. In each case, these surface sinks form near the rear of the dimple and
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(a)

(b)

Figure 4.6: Pressure tap data for each of the 7 pressure taps (a) 0.25 h/D dimple
(b) 0.15 h/D dimple
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(a)

(b)

Figure 4.7: PSD for each of the 7 pressure taps (a) 0.25 dimple (b) 0.15 dimple
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move upstream towards the front of the dimple. Visualization of vortex cores reveals

that each of these sinks is the site of a pinned vortex core. The vortex cores appear

to trace vortices up through the dimple and turn spanwise as they reach the shear

layer. Each of the surface sinks tends to wander in the areas denoted in parts a and

b of Figure 4.8. The regions of vortex wandering are fairly similar. In the aft section

of the dimple, a region of disorganized surface lines is present. This area corresponds

to the wake region observed by Vincent [14], shown in Figure 2.2.

Despite the similarities, the behavior of the pinned vortices does differ in some

respects between the two cases. For the 0.25 h/D dimple, the sinks begin fairly

disparate and gradually coalesce into two co-existent vortex cores. The development

of these sinks begins in the rear of the dimple, in the wake region. Both begin to

develop at the same time. As they develop they move upstream in the dimple and

are able to remain fixed even slightly above the spanwise centerline of the dimple.

The sinks (and associated pinned vortices) coalesce at about the same time as the

pressure flucuations observed in the pressure tap data (figure 4.6) begin. The sinks

for the 0.15 dimple are far more dynamic; they continually form in the wake region,

move upstream, and break up after passing into the front half of the dimple. Usually,

only one sink is present at a time. The formation and dissipation of the sinks in

this case shows almost alternating behavior; usually one sink develops as the other

dissipates.

The velocity profiles (Figure 4.9) reveal two interesting details about the flow

through these dimples. First, the velocity magnitude in the dimple below the shear

layer is small for each dimple except in the wake region in the rear of the dimple. The

velocity for both dimples seems to be fairly uniform reversed flow in the depths of

each dimple. This suggests that much of the activity in the dimple occurs along the

shear layer across the mouth of the dimple and in the wake region in the rear of the

dimple. This is supported by a profile inspection of vorticity isosurfaces (Figure 4.10).

Secondly, regions of high vorticity are concentrated in the shear layer and in the wake

region as described by Vincent [14]. Much lower magnitudes of vorticity are observed
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(a)

(b)

Figure 4.8: Typical surface flow for quasi-steady category with general areas of sink
movement circled in blue (a) 0.25 h/D dimple (b) 0.15 h/D dimple
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within the dimple itself. The velocity profiles also provide an explanation for the

forward movement of the dimples. The flow near the dimple bottom is reversed,

which would pull the surface sinks upstream. The velocity profiles also give greater

detail on the wake regions; large vortices fill the wake region, as revealed by the

swirling flow in the rear of the dimple.

Unlike in the steady category, a variety of vortical motion is present in both

these dimples. In addition to the pinned vortices at the surface sinks, there also

exist streamwise vortices in the wake region and spanwise vortices in other regions

of both dimples. Figure 4.11 below shows a significant feature revealed by vorticity

isosurfaces, the existence of a vortex “heart” near the center of the dimple. The heart

consists of a distinct group of medium vorticity isosurfaces just upstream of the center

of the dimple. This heart was present in both dimples, though in the 0.25 dimple,

it did not appear until the pinned vortices had developed. The streamwise vortices

in the wake region and the vortices shed by both dimples appeared to originate from

this heart. The velocity profiles (Figure 4.9) reveal that this region of vorticity likely

results from a maximum velocity gradient above the center of the dimple. Behind

the center of the dimple is the wake region, with more distinct vorticies but smaller

gradients, hence lower strength vorticity isosurfaces. The vortices shed by the hearts,

however, are often quite strong. These regions of high vorticity emerge as the pinned

vortices are able to interact with the heart and produce greater shedding.

There appears to be an association between the streamwise vortices (or stream-

wise elements of spanwise vortices) and the sinks revealed by the surface flow. The

dominant spanwise vortices may originate from the bow of the dimple as flow curves

down into the dimple and is pulled downstream. The sink flows appear to largely

draw flow from the sides of the dimple and then project up and inwards towards the

middle of the dimple (Figure 4.12). These trends reflect the description of flow offered

by Ligrani [7]. The flow projected upwards from the sink is swirling due to the curve

of the dimple sides, and is pulled downstream by the bulk flow.
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(a)

(b)

Figure 4.9: Typical centerline velocity profiles for quasi-steady dimples (a) 0.25
h/D dimple (b) 0.15 h/D dimple
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Figure 4.10: Vorticity isosurfaces in 0.15 h/D dimple with medium strength in light
blue and high strength in dark blue

Figure 4.11: 0.15 h/D dimple with vorticity heart circled in green
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Figure 4.12: Green streamlines are drawn in the sides of the dimple into vortices
pinned at the surface sinks

The shedding of vortices also strongly differentiates these two cases. The pres-

sure taps and vorticity isosurface data for the 0.25 h/D case suggest that few signif-

icant pressure waves are produced and few strong vortices are shed past the dimple.

However, the 0.15 h/D case shows different behavior. Large regions of high strength

vorticity impact the downstream surface of the dimple roughly every 2 or 3 timesteps,

where the timestep size is 10e-4 s. This corroborates the PSD data suggesting a

shedding frequency of 400 Hz. Low strength vorticity isosurfaces stretched stream-

wise downstream of the dimple. Vincent [14] identifies these vortices as beneficial in

mitigating downstream separation.

Interestingly, the 0.15 h/D case has a greater total dimple depth than the 0.25

h/D case. However, it has a greater inlet area for its volume than the 0.25 h/D

case. This suggests that dimple depth alone cannot be used to predict dimple flow

characteristics; if greater dimple depth alone resulted in less vortex movement due to

removal from high energy flow, then the total depth of the 0.15 h/D case would show

less pinned vortex activity.

Examination of this category suggests that the motion of the pinned vortices

may be a strong indicater of flow within the dimple. The 0.15 h/D case had continual
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motion of pinned vortices and more downstream flow effects, in addition to a heart

present throughout the time studied. The formation of the heart and fluctuation of

pressure taps for the 0.25 h/D dimple occurred as the pinned vortices formed and

moved forward, suggesting that the heart or pinned vortices at the sinks have a direct

influence on downstream flow.

4.2.1 Comparison with Vincent. The flow in the 0.25 h/D dimple differed

noticeably from the flow in the same case for Vincent’s [14] 0.10 depth to diameter

ratio dimple. While his dimple did contain pinned vortices moving in the dimple

similar to the 0.25 dimple, these vortices, along with all the flow in the dimple, were

subject to strong occasional disruptions, similar to the bulk shed case described later

in this document. The 0.25 h/D dimple showed no such instability. The depth of the

dimple may provide an explanation. Beneath the shear layer, as mentioned, much

of the flow moves at a low velocity. The deeper 0.25 h/D dimple may be swallowing

some of the vortical motion, particularly in the wake region. The extra depth may

remove these flow features from the more dynamic environment at the shear layer.

The flow for the 0.25 h/D dimple somewhat resembles flow for a shallow cavity

of equal depth to length ratio as observed by Grace [5] and Ozsoy [9]. In Ozsoy’s and

Grace’s cavities there was a significant degree of flow activity within the cavity, but

far less apparent activity downstream of the cavity. This is similar to the 0.25 h/D

case. Despite the significant apparent activity within the dimple, the 0.25 h/D dimple

seems to have little effect on the downstream flow, as suggested by the pressure tap

data (Figure 4.6).

The flow in the 0.15 h/D dimple, on the other hand, behaved much like Vincent’s

0.10 h/D dimple for the same case. Both had pinned vortices as revealed by surface

sinks. In both of these dimples vortices were a stable feature; while they did move and

alternatively disappear and re-form, their overall motion in the dimple was stable, as

opposed to the bulk shedding case. The similarity here is interesting; the 0.15 h/D

dimple is no closer in size to the 0.10 dimple than the 0.05 h/D dimple yet it shows
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much more similar behavior. This suggests a “threshold” value for dimple depth

which is able to produce sufficient velocity gradients to generate the pinned vortices

and vortex heart.

The question remains as to why the 0.15 h/D dimple showed more downstream

flow effects than the 0.25 h/D dimple. The swallowing explanation offered above may

be useful here as well; many of the disturbances produced by the dimple remain in the

dimple rather than escaping and moving downstream. Although the 0.15 h/D dimple

has a greater total depth than the 0.25 h/D dimple, it also has a larger surface area.

This may allow for a greater degree of flow mixing near the shear layer.

4.3 Bulk Shed Category

This case (the ReD 9500 Rex 21000 0.15 h/D dimple) showed interesting behav-

ior; sort of a transition between quasi-steady and chaotic. It showed some traits of the

quasi-steady case, but also had occasional bulk shedding where many of the vortical

structures would be ejected from the dimple. The pressure taps (Figure 4.13) reveal

several peaks at all tap locations. These peaks occur slightly later at each successive

downstream location, suggesting a finite travel time of a pressure wave. The waves

are most clear just above the dimple. The pressure variances are visible at the latter

downstream pressure taps, but the pressure waves seems to dissipate as they reach

the end of the domain. The buildup to each peak is quite similar in shape, suggesting

similar behavior leading to each pressure peak. Also, after each peak, the return to

small pressure variations occurs suddently. Between these peaks there are variations

in pressure, albiet smaller ones.

The PSD plot (Figure 4.14) shows two distinct peaks at about 500 Hz and

900 Hz. These peaks are most pronounced in the pressure tap immediately above

the dimple; however they are evident in the further downstream pressure taps as well.

Beyond the 1000 Hz range, most of the pressure taps quickly level off suggesting there

is mostly noise at the higher frequencies. However, the two pressure taps nearest the

dimple show definite activity out to the Nyquist limit (5000 Hz for the sampling
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Figure 4.13: Pressure tap data for each of the 7 pressure taps of the bulk shed
dimple

rate of 10,000 Hz). This suggests significant high frequency activity within and just

downstream of the dimple; however, this high frequency activity appears to have little

effect on the downstream flow. Behavior above about 500 Hz is difficult to observe

with a time step size of 1e-4, as this behavior takes place over less than two time

steps.

A time accurate examination of oil flow lines, vorticity isosurfaces, and particle

traces through the dimple reveal the flow tends to operate in alternating stable and

unstable cycles. The terms “stable” and “unstable” are given to aide in discussion.

At the beginning of a cycle, surface flow lines and vorticity isosurface reveal a pinned

horseshoe vortex, similar to that observed in the quasi-steady category. Figure 4.15

shows surface oil flows and vortex cores typical of the stable period of flow. This

figure also shows the pinned vortices at the oil flow sinks. As time progresses, the

vortex location moves upstream inside the dimple. As the pin location approaches

the midpoint of the dimple, the vortex appears to become unstable and large-scale

shedding from the dimple occurs, as evidenced by the behavior of the pressure tap

data (Figure 4.13). After a period of very chaotic flow activity with large movement
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Figure 4.14: PSD for each of the 7 pressure taps for the bulk-shed dimple

of oil flow lines, vortex cores, and vorticity isosurfaces, the dimple re-stabilizes with a

pinned vortex near the aft of the dimple. This overview provides a general description

of flow dynamics in this category, but it must be noted that the flow does not always

behave exactly this way.

4.3.1 Stable Period. Flow during the stable period strongly resembles the

flow in dimples categorized as quasi-steady. Throughout most of this period, there are

one or two pinned vortex cores as revealed by surface flow sinks. During the period

of relative stability, vorticity isosurfaces and vortex cores suggest that fewer, or at

least smaller, vortices appear to shed from the dimple. This seems to be corrobo-

rated by the small pressure variations recorded by the pressure taps between peaks,

especially so for the taps nearest the dimple. (Larger variances in downstream pres-

sure taps can be attributed to dissipation of pressure waves; as the pressure waves

move downstream they become less well defined as they have less peak strength and

longer duration. Also, the mesh becomes much coarser downstream of the dimple.

This reduces the accuracy of pressure readings.) The flow during the stable periods

shows general similarity between occurrences. Throughout each stable period there
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Figure 4.15: Typical flow behavior during stable period of bulk shed dimple flow

is at least one, often two, sinks as revealed by surface flow visualization. Each stable

period also shows highly asymmetric behavior. While the sinks are usually about the

same spanwise distance away from the middle of the dimple, they were at different

streamwise locations. The sinks moved in the streamwise direction at different rates.

Figure 4.16 shows the the vector plot for stable flow in the bulk shed category;

it is very similar to the velocity profiles observed in the quasi-steady category (Fig-

ure 4.9). Evident in the velocity profile is the wake region, similar to the quasi-steady

dimples. This dimple also shows a strong shear layer with low magnitude reversed

flow filling most of the dimple below the shear layer and upstream of the wake region.

Vorticity isosurfaces reveal other similarities between the steady period and

the quasi-steady dimples. During the steady periods there were a series of medium

strength spanwise vorticies in the front half of the dimple. Figure 4.17 below displays

typical vorticity isosurface behavior during a steady period. These medium strength

vortices form a heart from about 25% of the streamwise dimple length to about the

midpoint of the dimple. High strength vortices regularly shed from just behind this

heart. The shedding of these vortices accounts for the 500Hz spike in the PSD plot

(Figure 4.14). The shed vortices come from about the same location throughout
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Figure 4.16: Velocity profile typical of stable period of bulk shedding category

the stable period, near the center of the dimple, just behind the heart. The heart

and shedding behavior is similar to the quasi-steady ReD 20500 Rex 77000 0.15 h/D

dimple. It must be noted, though, that the heart shape is not perfectly consistent.

It may grow in size and stretch to either side, but the general form, that of a cluster

of streamwise vortices just in front of the center of the dimple, is a consistent feature

of the stable period. In this respect, it does differ from the hearts observed in the

quasi-steady dimples. The quasi-steady dimple hearts were much more consistent in

location. The changing shape of the heart in the bulk-shed case does not necessarily

tie into instability; the heart displayed stability while being pulled to one side.

Figure 4.18 reveals that, as with the quasi-steady dimples, the highest vorticity

seems to be concentrated in the shear layer along the mouth of the dimple. Some

medium and high strength vorticity isosurfaces are present in the wake region in the

rear of the dimple. This, along with the velocity profile plot (Figure 4.16), suggest

that, as with the quasi-steady dimples, the bulk of dimple activity takes place within

the wake region and in the shear layer.
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Figure 4.17: Vorticity isosurface formation during typical stable period

Figure 4.18: Profile view of medium strength vorticity isosurfaces typical of stable
period
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Figure 4.19: View of low (light blue) and medium (blue) stength vorticity isosur-
faces in and downstream of the dimple

Beyond the dimple, vortex strength reduced quickly. The medium and high

strength vorticies do not exist far beyond the dimple. However, as shown in Fig-

ure 4.19, distinct streamwise vortex structures existed downstream of the dimple at

a low strength.

The pinned vortices revealed by the surface flow sinks (Figure 4.20) typically

start near the aft of the dimple and move forward during the stable cycle. However,

this period has a large degree of unsteadiness in and of itself; stable is accurate only

in comparison to the bulk shedding period. Sinks coalesced not only on the back of

the dimple, but nearer the middle as well. The sinks appear to move over a greater

area during the stable periods of this case than those in the quasi-steady category.

These organized flow features, however, are not stable. Occasionally the heart will

deform and the pinned vortices will dissolve as several medium and strong vortices

are shed as the dimple enters an unstable period.

4.3.2 Unsteady Period. The bulk shedding periods do not show much exact

duplication between occurrences. However, a few trends carry through. Figure 4.21

shows one such trend, the large number of vortex cores in the dimple during an

unsteady period. This large number of independent cores, rather than a smaller
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Figure 4.20: Surface flow sinks showing pinned vortex locations; usual regions in
which these sinks move are cricled

number of larger cores seen during the steady period (Figure 4.15), suggests the

breakup of vortices within the dimple.

Also during the unsteady cases, there is a distinct lack of persistant surface

flow sinks. As the unsteady period begins, both sinks break up. Each side attempts

to return to stability independently as the pinned sources attempt to re-develop, as

shown by surface flows in Figure 4.22. It appears that the dimple begins to return

to stable flow when a vortex core contacts the surface of the dimple far enough back

and near the edge of the dimple to become pinned and, from there, develop.

During each unsteady occurrence, there are large pressure waves shed from the

dimple that propagate downstream, as revealed by the pressure plots (Figure 4.13).

Examination of vorticity isosurfaces reveal a possible explanation. As unstable periods

begin, the spanwise vortices making up the heart of the dimple begin to break up

as they are pulled to one side of the dimple and acquire a streamwise orientation

(Figure 4.23). As this occurs, more strong vortices are shed from the dimple as the

pressure taps detect larger pressure waves. Figure 4.23 shows the heart beginning

to pull to one side and break up. The breakup of the heart does not happen the

same way with each onset of unsteadiness. While it usually happens as a surface sink
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Figure 4.21: Flow during unstable period of bulk shedding category where the
colored lines are vortex cores

Figure 4.22: Surface flow sink attempting to reform circled
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Figure 4.23: Vorticity isosurface behavior in unstable period

Figure 4.24: Streamline behavior in unsteady period

moves forward and breaks up, sinks were observed to break up without destabilizing

the entire dimple.

Another common feature of the onset of unstable periods is the shift of flow

towards one side of the dimple. Particle traces originating at a rake upstream of

the dimple just above the bottom of the domain reveal this motion (Figure 4.24).

However, as with the breakup of surface sinks, the shift of flow to one side or another

is not always followed by the bulk shedding.
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It seems that the onset of the unstable periods is the result of a combination

of factors. The side to side motion, pulling of the heart to one side, and breakup of

surface sinks all come into play to cause a bulk shed. The return to stability shows a

more consistent process.

As the heart loses structure, the strong vortices are shed less. This leads to the

sudden decrease in pressures detected by the pressure taps. The vortex activity in

the dimple begins to settle down; however, the heart does not immediately return. It

takes some time for the heart to begin to reform, but once it has begun, it reforms

quickly. First, surface sinks begin to appear. As one is able to stably coalesce and

begin to move forward, the heart begins to reform. Figure 4.25 shows the sudden

reforming of the heart after an unsteady period. To get an idea of how fast the heart

reforms, if the typical duration of the unsteady period is used as a time scale (it

usually lasts about 0.05 s) then the heart reforms over about 1% of the time scale.

The reformation of the heart signals the beginning of a new stable period. Apparent

in figure 4.25 are stable surface sinks, which accompany the reformation of the heart.

4.3.3 Comparison with Vincent. The behavior for this case seems much like

that for Vincent’s geometry at a dimple depth to diameter ratio of 0.1 for the same

case. Both showed the same steady flow, with movement of pinned vortices in the

dimple similar to the quasi-steady dimples. Vincent’s data suggested a large wake

region and occasional bulk shedding for this case. The overall flow patterns suggest

that these dimples have flow that is qualitatively very similar.

4.4 Chaotic Category

This category (the ReD 20500 Rex 5000 0.15 h/D dimple) is perhaps the most

unique. The pressure tap data (Figure 4.26) suggests highly active flow throughout

the domain in and downstream of the dimple. Strikingly, the pressure tap data is

almost the exact same for each of the pressure taps. The pressure taps follow the

same pattern, with spikes and valleys in the same places. The values are stacked
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(a)

(b)

Figure 4.25: (a) Vorticity isosurfaces at end of unstable period (b) Vorticity isosur-
faces about 5ms after (a)
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Figure 4.26: Pressure tap data for each of the 7 pressure taps of the bulk shed
dimple

right on top of each other. The spikes appear at a fairly high frequency throughout

the domain, but the several large spikes in pressure stand out. As with the 0.15 quasi-

steady dimple, this pressure tap data suggests a continuous shedding of pressure waves

from the dimple.

The PSD plot (Figure 4.27) for this case also differentiates it from the other

cases. It shows no firm peak, even at the beginning of the time domain. The PSD

plot makes it appear as though this case is largely noise; however, the magnitudes

and pattern of the pressure tap plot suggest that there may be more going on than

random noise motion. In any case, the large amount of activity at the dimple and

throughout the domain suggest the dimple is having some effect on the downstream

flow.

The chaotic category showed behavior different from all other categories. Princi-

pally, it lacked any of the organized structure seen in the other categories. Figure 4.28

shows a typical state of this case, with surface flow lines and vorticty isosurfaces. An-

imations of this case revealed a high degree of activity, although little overall pattern
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Figure 4.27: PSD for each of the 7 pressure taps for the choatic dimple

or structure could be observed. The flow for this category appeared most similar to

the unsteady period flow of the bulk shed category. This is of little help in charac-

terizing the flow; the trends noticed with the unsteady flow of the bulk shed category

were formed in association with departure from or return to stable flow.

Surface sinks denoting pinned vortices were a prominent feature of the quasi-

steady and bulk shed categories. However, such sinks were not observed to form

and stabilize in this category, as shown in Figure 4.29. Consistent vortex structure

was absent as well, as revealed by the size and number of independent vortex cores.

Figure 4.28 shows the disorganized surface flow and vortex cores, very similar to the

unsteady period of the bulk-shed dimple.

Small regions of medium and high vorticity moved through the wake region and

shed throughout the observed time domain. Low and medium strength regions of

vorticity on the bow and on the sides of the dimple show more stability (Figure 4.30).

Examination of these isosurfaces suggest that the flow is curling over the lip of the

dimple as it crosses in, and then quickly transition to turbulent motion. No heart is

observed in this case as was observed in the quasi-steady and bulk shed categories.
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Figure 4.28: Overview of flow in the chaotic dimple, black lines denote vortex cores

Figure 4.29: Surface flow and vorticity isosurfaces in the chaotic dimple
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Figure 4.30: Vorticity isosurfaces of low (light blue), medium (blue) and high (dark
blue) strength in the chaotic dimple

Interestingly, the region where the heart resides in the other categories is in this case

a region of very low vorticity (below the low-vorticity threshold).

The existence of pinned vortices and a vorticity heart were important charac-

teristics of flow for the quasi-steady category and the stable period of the bulk shed

category. Given their absence in this category, the highly unsteady nature of the flow

through this dimple is of little surprise. This category and the unsteady period of the

bulk shed category suggests that stable pinned vortices are an important feature to

heart formation and stable dimple flow.

Figure 4.31 below showing the velocity profile along the chordwise center line

of the dimple reveals other differences between this case and the others. The wake

region is much larger here than in the other cases. The spanwise vortices in the aft

half of the dimple reach almost to the spanwise centerline of the dimple. This larger

wake region contributes to the behavior of the flow within the dimple. As observed in

the quasi-steady and bulk flow cases, the pinned vortices as identified by the surface

flow sinks are an important part of dimple flow behavior. The presence of a strong,

large wake region and strong spanwise vorticties that fill more of the dimple than in

other categories may be preventing these structures from forming.
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Figure 4.31: Sample velocity profile of chaotic flow category

The question remains as to why this case contains such irregular flow and such

a large wake region. The streamwise centerline velocity (Figure 4.31) profile may

offer some insight. In each dimple case so far, large amounts of vorticity have resulted

from the gradients across the shear layer over the dimple mouth. This vortical motion

can mix air from above the shear layer into the dimple. This case has the smallest

boundary layer, and so higher speed air is mixed into the dimple, causing larger

velocity magnitudes to exist within the dimple.

This dimple, like the other two 0.15 h/D depth to diameter ratio dimples, be-

haves much like Vincent’s 0.10 h/D dimple at the same case. Both this dimple and

Vincent’s showed high unsteadiness and continually variable flow with little discern-

able pattern.

4.5 Downstream Effects

Examination of planes normal to the chordwise direction just downstream of

the dimple can help show how the dimple is influencing downstream flow. Figure

4.32 compares a profile just downstream of the ReD 9500 Rex 21000 0.15 h/D dimple

(typical of the stable period bulk shed dimple and of the quasi-steady dimples) to
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the chaotic ReD 20500 Rex 5000 0.15 h/D dimple. The white arrows depict velocity

vectors; the non-chordwise components have been tripled to show the swirling motion

of the downstream flow. This swirling flow matches the changes in the chordwise ve-

locity contour plots. The contour plots suggest in both cases a mixing of downstream

flow. High speed flow is drawn down nearer the surface in some areas, and in others

low speed flow is drawn up into the freestream. The chaotic profile shows far more

disorganization than the other profile.

Even the flow immediatly downstream of the dimple (where Figure 4.32 was

taken) is likely very turbulent. The laminar flow solver used in this investigation will

not able to resolve turbulent flow. The region just downstream of the the dimple has

a much higher grid density than the far downstream region, but the density is still too

low for turbulent flow. Hence, Figure 4.32 is useful for providing a possible overview

of downstream flow, but is prone to error. Any analysis or conclusions made about

flow downstream dimple for this grid and laminar solver are somewhat speculative.

4.6 Effect of Depth on Dimple Flow

The difference in flow between the 0.05 h/D dimples and the 0.10 h/D and

0.15 h/D dimples for the same conditions suggest that there may be a threshold

value of depth to diameter ratio necessary to trip the flow from a nearly steady fixed

separation bubble to more dynamic flow involving vortex movement. Vincent [14]

had several dimples that would fit the steady category. All of these dimples were at

his lowest tested dimple diameter, and each had a depth to diameter ratio of 0.10.

Vincent’s data suggests that the threshold for tripping to more unsteady behavior is

not dependent upon depth to diameter ratio alone, but that depth by itself may play

a role. The data of this investigation shows that depth alone will not determine if

flow through a dimple acts as a nearly steady separation bubble.

The behavior observed in the 0.15 h/D dimples matched the behavior described

by Vincent for each case. This consistent similarity suggests that increasing the

dimple depth to diameter ratio from 0.10 to 0.15 does not significantly alter flow
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(a)

(b)

Figure 4.32: Velocity vectors with non-chordwise components tripled and chordwise
velocity contours for (a) ReD 9500 Rex 21000 0.15 h/d dimple and (b) ReD 20500 Rex

5000 0.15 h/D dimple
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dynamics. However, for a dimple depth to diameter ratio of 0.25, the dimple flow

changed noticeably. The flow for the 0.25 h/D dimple did not show the bulk shedding

observed in the 0.15 h/D dimple for the same case. The 0.25 h/D dimple flow was

much more like that of the quasi steady 0.15 h/D dimple for the ReD 20500 Rex 77000

case, yet it showed much less downstream effect. The pressure taps for the 0.25 h/D

dimple resemble most closely the dimples for the 0.05 h/D dimples. The swallowing

phenomenon offered in section 4.2.1 to explain this behavior has the consequence that

increases in dimple depth to diameter ratio can begin to dilute the downstream effects

of the dimple.

4.7 Characteristics of Dimple Flow

The observations made suggest that flow through a dimple is a highly unsteady

phenomenon dependent upon many factors. However, this investigation revealed sev-

eral qualities that may aide in studying and characterizing dimple flow in the future.

Vincent [14] suggested that dimples that can maintain stability while shedding

vortices at high frequency are most beneficial to preventing downstream separation.

The dimples which showed some of this behavior, at least for some time, all contained

a heart of streamwise vortices. These vortices appeared to originate from flow coming

over the leading edge of the dimple. The vortices shed by the dimple appeared to be

shed from the heart.

The existence, stability, and motion of the pinned vortices are strong indicators

of the flow within the dimple. Flow coming in from the sides of the dimples becomes

entrained in these vortices. The pinned vortices appeared to encourage vortex shed-

ding from the dimple heart. Also, the stability of the flow is indicated, to some degree,

by the behavior of the pinned vortices. The flow in the bulk shed category would not

go unstable unless one of the surface sinks broke up.

Attempts to quantify dimple geometry effects on dimple flow proved elusive. A

variety of parameters (diameter, depth, chordwise location, boundary layer thickness,
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volume), ratios (depth to diameter, depth to boundary layer thickness, diameter to

boundary layer thickness, etc.) and combinations thereof were examined to try and

determine trends relating to flow category. However, between the data of this and

Vincent’s investigation, no parameter or combination was found that could give a

strong, meaningful pattern to flow category.

In spite of the difficulty in divining quantitative parameters of dimple flow, some

observations regarding qualitative flow characteristics and trends may be made. The

flow similarity between the current shallow (0.05 h/D) and Vincent’s small diameter

dimples suggests that both diameter and depth to diameter ratio influence dimple

flow. The difference between the ReD 20500 Rex 5000 and ReD20500 Rex 77000 cases

revealed by the 0.10 h/D and 0.15 h/D dimples show that boundary layer thickness

can have a strong influence on dimple flow.

The following overview of dimple flow structure is offered. If a dimple is too

shallow (low depth to dimaeter ratio) or of too small total depth, the dimple will

generate a fixed separation bubble rather than the more desirable dynamic vortex be-

havior. As the dimple becomes large enough to generate shedding vortices, boundary

layer thickness, especially in relation to dimple diameter, becomes more important. A

thin boundary layer will result in highly disorganized dimple flow. As the boundary

layer grows thicker, the dimple flow will stabilize. The disorganized flow becomes

constrained to certain periods between periods of more stable flow, and eventually

vanishes as the boundary layer grows thicker. Further increases of dimple depth be-

yond that necessary to generate vortex shedding seem merely to entrain more flow

in the dimple while reducing downstream effect. As dimple depth to diameter ratio

increases, more flow is moved from the dynamic environment of the shear layer to the

more benign environment in the bottom of the dimple.
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V. Conclusions

The dimple depth to diameter ratio was found to have a noticeable effect on flow

through the dimple. In all investigated flow regimes, the flow through a very

shallow (depth to diameter ratio of 0.05) dimple was found to be nearly steady, even

if the flow for the same case with depth to diameter ratio of 0.10 was highly chaotic.

Dimples of a depth to diameter ratio of 0.15 were found to behave very similarly to

the same case with a depth to diameter ratio of 0.10 as investigated by Vincent [14].

A dimple depth to diameter ratio of 0.25 seemed to swallow much of the flow mixing

and reduce the downstream effect of the dimple.

Several characteristics shared among many of the non-shallow dimples were

identified. In the three that displayed non-chaotic motion (0.15 h/D ReD 9500 Rex

21000, 0.25 h/D ReD 9500 Rex 21000, and 0.15 h/D ReD 20500 Rex 77000), a vortex

heart existed in the middle of the dimple along the shear layer. From this heart are

shed vortices at a high frequency. Also in the three non-chaotic cases, the behavior

of the pinned vortices seemed to have a strong influence on the dimple flow; stable,

regular vortex motion would lead to a stable overall dimple. However, the breakup

of the pinned vortices contributes to de-stabilization and can move the entire dimple

to bulk flow. This results in a short increase in shed vorticity followed by a lapse in

vortex shedding.

High speed, continuous vortex shedding is desirable for greater flow mixing (as

established by Ligrani [7]). This suggests that the shallowest dimple possible (lowest

depth to diameter ratio) be used that will be sufficient for activating non-steady

flow. If the dimple is too shallow, the dimple will not affect the flow sufficiently. A

dimple beyond the depth necessary to develop pinned and shedding vortices will only

serve to entrain more flow in the slow, bottom part of the dimple. The dimples in

Lake’s [6] wind tunnel investigation all showed behavior similar to the steady category

of dimples. Further improvments in flow separation performance may be obtained by

increasing the depth of these dimples.
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5.1 Suggestions for further research

While this investigation was able to identify effects of changing dimple depth

to diameter ratio on dimple flow, it did not completely separate depth from diameter

effects. Examination of more depth to diameter ratios in the quasi steady, bulk shed,

and chaotic categories may establish a definite difference (i.e., which has a greater

effect) between depth and diameter in these flow categories.

The observations made in this investigation suggest several possible avenues for

further research. Only one 0.25 h/D dimple was studied. It may be beneficial to

examine 0.25 or greater depth to diameter ratio dimples for other cases to determine

whether the trend observed in the cases studied is consistent with other geometries.

It may also be informative to look at dimple depth to diameter ratios between 0.15

and 0.25 to see if there is a definite trend towards the dimple swallowing flow and

reducing downstream effects, as suggested by this investigation. Also, confirmation

of the transition from chaotic to quasi steady flow described could be verified by

examination of many depth to diameter ratios with a constant chordwise location

with particular attention to duration of unsteady periods.

The observations drawn and conclusions made about flow downstream of the

dimple, and hence the effect of the dimple on the flow, are somewhat speculative. The

flow downstream of the dimple has been observed to have significant turbulence levels

[6], and laminar flow models were used for this and previous numerical investigations

into dimple flow [10], [2], [14]. A Large eddy simulation may be able to model the

separation behavior necessary for dimple study while confirming or correcting earlier

conclusions made about downstream flow effects.

An extensive study on optimum dimple shape and effect of dimple shape on

flow has not been made. Rouser [10] examined only two very broad shapes, an ellipse

and a half ellipse. Dimples with different surface geometries (i.e. a square instead

of circle mouth) may provide different flow characteristics. Changes may also arise
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from using different shapes of the bottom of the dimple, such as giving the dimple a

teardrop cross section rather than making it from a section of a sphere.

Further efforts to characterize dimple flow, either in terms of overall structure

or in more specific terms such as vortex shedding frequency, quantitatively may see

more success than the efforts of this investigation. Such quantifications, if they could

be made, would assist greatly in optimizing dimples for use in low pressure turbine

blades.

64



VI. Additonal Comparison Figures
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Figure F.1: Pressure tap for ReD 20500 Rex 5000 0.05 h/D dimple.

Figure F.2: Pressure tap for ReD 20500 Rex 77000 0.05 h/D dimple.
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Figure F.3: Vorticity isosurfaces for ReD 9500 Rex 21000 0.25 h/D Dimple

Figure F.4: Vorticity isosurface profile for ReD 9500 Rex 21000 0.25 h/D Dimple

Figure F.5: Downstream velocity profile for ReD 9500 Rex 21000 0.25 h/D Dimple
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Figure F.6: Downstream velocity profile for ReD 20500 Rex 77000 0.15 h/D Dimple

Figure F.7: Downstream velocity profile for ReD 9500 Rex 21000 0.15 h/D Dimple
during unstable period
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